FLOW OF FLUIDS

1. When principle of conservation of	energy is applied to flow of	fluids then resulting equation is known	n as
a) Reynolds number	b) Bernoulli's theorem	c) Hagen-Poiseuille's equation	d) Kick's theory
2. Region between 2100-4000 for Rev	ynolds number is known as	•••••	
a) Turbulent region	b) Laminar region	c) Safe region	d) Critical region
3. In Bernoulli's theorem the Potent	ial energy is also known as .		
a) Resonance energy	b) kinetic energy	c) Thermal energy	d) Datum energy
4. Which of the following is not a typ	e of energy loss?		
a) Friction losses	b) Enlargement losses	c) Resistance losses	d) Losses in fittings
5. Formula for datum energy is			
a) $\frac{u_{a^2}}{2g}$	b) X_A	c) $\frac{P_A}{gP_A}$	d) $\frac{u_{a^2}}{2gP_A}$
6. Bernoulli's theorem state that the	pressure energy, kinetic en	ergy, datum energy at any point of the	fluids is
a) High	b) Constant	c) Low	d) None of these
7. The SI unit of Energy is			
a) Meter	b) Calorie	c) Joule	d) Kelvin
8. The energy possess by the body vi	rtue of its motion is known	as	
a) Kinetic energy	b) Potential energy	c) Pressure energy	d) None of these
9. The total energy in Bernoulli's the	eorem is sum of		
a) Thermal energy, datum energy,	b) Kinetic energy,	c) Potential energy, thermal energy,	d) Thermal energy,
potential energy	potential energy,	resonance energy	Datum energy,
	pressure energy		Frictional energy
10. Complete the Bernoulli's equation	$\frac{PA}{\rho Ag} + XA + \frac{\mu A^2}{2g} + W - F$	= ?	

a) -	$\frac{P_B}{\rho_B g} + X_B V + \frac{\mu B^2}{2g}$	b) -	$\frac{P_B V}{\rho} + X_B + \frac{\mu B^2}{2g}$	c) -	$\frac{P_B}{\rho_B g} + X_B + \frac{\mu B^2}{2g}$	d)	$\frac{P_B}{\rho_B g h} + X_B + \frac{\mu B^2}{2g}$
11.	Which of the following is the type of	of n	nanometer?				
a)	Simple manometer	b)	Inclined manometer	c)	Differential manometer	d)	All of these
12.	According to Bernoulli's equation.	wh	ere the speed is high, the	e pr	essure will be		
a)	High	b)	Low	c)	Medium	d)	No pressure
13.	Fundamental equation that relates	pre	essure to fluids speed & l	neig	ht is known as		
a)	Speed equation	b)	Reynolds equation	c)	Bernoulli's Equation	d)	None of these
14.	Which of the following works on p	rinc	ciple of Bernoulli's theory	em.	?		
a)	Venturi meter	b)	Orifice meter	c)	Cyclone separator	d)	Both A & B
15.	Which is the formula of pressure e	ner	gy in terms of Bernoulli'	s E	quation?		
a)	$\underline{P_A}$	h)		c)	P_A	d)	ρg
<i>a)</i>	ρg	0)	$\rho_{A}g$	C)	$\overline{\rho_a g}$	u)	$ ho_{Ag}$
16.	Bernoulli's theorem cannot be app	lied	when flow is				
a)	Rotation	b)	Turbulent	c)	Unsteady	d)	All of these
17.	When the principle of conservation	ı of	energy is applied to the	flov	v of fluids then resulting equation is	s ca	lled
a)	Reynolds number	b)	Bernoulli's theorem	c)	Kick's theory	d)	Hagen –
							Poiseuille's
							equation
18.	The kinetic energy may be express	ed a	18				
a)	$\frac{\mu^2 A}{2}$	h)	μ^{2A}	c)	$\underline{\mu A}$	d)	μ^2
a)	2g	0)	g	- /	2 <i>g</i>	u)	2 <i>g</i>
19.	The Bernoulli's theorem is applied	in	measurement of				
a)	Rate of energy	b)	Rate of fluid	c)	Rate of velocity	d)	Rate of
							sedimentation

20	. The Bernoulli's theorem is applied	l in	working of				
a)	Venturi pump	b)	Orifice pump	c)	Centrifugal pump	d)	Both A & B
21 . a)	The Bernoulli's equation is based There is no loss of energy of the liquid flowing.	on a b)	The velocity of flow is uniform across any cross section of the pipe.	c)	No force extenct gravity on the fluid.	d)	All of these
22. a)	. The change in Potential energy is i mgf	mea b)	sured as difference of mgh	c)	mg	d)	mgt
23. a)	. The fundamental equation that rel Bernoulli's Equation	lates b)	s pressure to liquid and l Light Equation	heig c)	ht is known as Speed Equation	d)	Equation of the continuity
24 a)	. change in kinetic energy is measur $\frac{1}{2}mv^2$	red b)	as difference of $(mv)^2$	c)	$\frac{1}{2}mv$	d)	$\frac{1}{(m)^2}$
25. a)	. If the Reynolds number is less that Turbulent	n 20 b)	00, the flow in pipe is Laminar	c)	Transition	d)	None of these
26 a)	In Pipe flow the critical Reynolds 640	nun b)	1 ber is 5× 10 ⁵	c)	2000	d)	64000
27. a)	Anemometer is used to measure Velocity	b)	Pressure	c)	Viscosity	d)	Internal Energy
28 a)	Losses in fitting may be due to Change in flow	 b)	Change in Direction	c)	Change in type of fitting	d)	Both B & C

29. a)	There is no loss of energy when Cross section of pipe enlarges	 b)	Cross section of pipe	c)	Cross section of pipe contracts	d)	Cross section of
	suddenly		reduces suddenly		gradually		pipe enlarges gradually
30.	When cross section of pipe changes	s su	ddenly loss of energy is	due	to		
a)	Air trapped	b)	Sudden changes in pipe	c)	Eddies	d)	None of the above
31	n in Poiseuilles equation is represe	ntin	σ				
a)	Velocity of fluids	b)	Viscosity of fluids	c)	Pressure of fluids	d)	Density of fluids
32.	During flow of fluidscaus	ses]	loss in pressure				
a)	Frictional forces	b)	Circular motion	c)	Centrifugal force	d)	Both A & C
33.	Contraction losses are represented	as.					
a)	$\Delta He = \frac{k\mu_2^2}{2g}$	b)	$\Delta He = \frac{k\mu}{2g}$	c)	$\Delta He = \frac{k\mu_3^3}{2g}$	d)	$\Delta He = \frac{k\mu}{2\Delta g}$
34	Hagen- noiseuille's equation is						
a)	$\Delta P_f = \frac{32Ln\eta}{D^2}$	b)	$\Delta P_f = \frac{32Ln\eta}{D^3}$	c)	$\Delta P_f = \frac{32Ln\eta}{D}$	d)	none of these
35. a)	Pressure drop is represented as ΔF_p	 b)	ΔP_f	c)	both A & B	d)	none of these
26							
36. a)	Variable head meter	b)	Insertion meter	c)	Variable area meter	d)	Both A & B
37.	Sudden enlargement loss represent	ed	by				
a)	$\Delta He = \frac{(\mu_1 - \mu_2)^2}{2g}$	b)	$\Delta He = \frac{(\mu_2 - \mu_1)^2}{2g}$	c)	$\Delta He = \frac{(\mu_1 - \mu_2)}{2g}$	d)	$\Delta He = \frac{(\mu_1 - \mu_2)}{2g^2}$

38. The Property of fluid they describe internal resistance it is known as.....

a)	Frictional loss	b)	Shock loss	c)	Resistance	d)	Internal Energy
39.	Which of the following is major los						
a.	Frictional loss	b.	Shock loss	c.	Inlet loss	d.	Exit loss
40.	Which property of fluid account for	or tl	ne major losses in pipe?				
a.	Density	b.	Specific gravity	c.	Viscosity	d.	Compressibility
41.	The frictional resistance for fluid i	n tł	e motion is				
a.	Proportional to the velocity in laminar flow and to the square of the velocity in turbulent flow	b.	Proportional to the Square of the velocity in laminar flow and to the velocity in turbulent flow	c.	Proportional to the velocity in both laminar flow and turbulent flow.	d.	Proportional to the square of the velocity in both laminar & turbulent flow.
42.	The Frictional resistance for fluid	in r	notion is				
a.	Inversely proportional to the square of the surface area of its contact.	b.	Inversely proportional to the square of the surface Area of contact.	c.	Proportional to the square of surface area of contact.	d.	Proportional to the surface area of contact
43.	The Frictional Resistance For fluid	l in	motion is				
a.	Dependent on the pressure for both laminar & turbulent.	b.	Independent of the pressure for both laminar & turbulent.	c.	Dependent on the pressure for both laminar & independent of the pressure for turbulent flow	d.	Independent on the pressure for laminar flow & dependent on the pressure for Turbulent.
44.	The device which is used for making	ng t	he temporary measuren	nent	t of flow is		
a.	Venturimeter	a.	Dull flow tube	b.	Orifice plate	c.	Pitot static tube

45. After the suddenly allow of fluid stream towards the narrow constriction the following will increase.

a.	Increase velocity of fluid at orifice meter	b.	Increase pressure of the fluid at orifice meter	c.	Increase temperature of the fluid at orifice meter	b)	None of these.				
46.	16. The difference in pressure head, ΔH can be read by										
a.	Galvanometer	b.	Manometer	c.	Photometer	b)	None of these				
47.	What is the constant of orifice met	er?									
a)	C ₀	b)	ΔH	c)	Both a and b	d)	U_0				
48.	Orifice meter is also referred as										
a)	Venturimeter	b)	Pitot meter	c)	Variable head meter	d)	Rota meter				
49.	As a result of pressure in orifice m	ete	r is higher at	poin	t than point B						
a)	Point A	b)	Point B	c)	Both points	d)	None of above				
50.	The orifice meter helps us to calcu	late	at point A an	nd B.							
a)	Temperature	b)	Velocity	c)	Pressure	d)	None				
51.	Orifice meter is plate	e.									
a)	Thick	b)	Wide	c)	Thin	d)	None of above				
52.	Choose the formula of orifice mete	er									
a)	PV=nRT	b)	$\sqrt{uv^2-u_0^2}$	c)	$\mathbf{u}_0 = \mathbf{C}_0 \sqrt{2 \mathbf{g}} \Delta \mathbf{H}$	d)	Both A and C				
53.	Pressure of head is denoted by										
a)	ΔΡ	b)	$\Delta \mathbf{H}$	c)	ΔPH	d)	None of above				
54.	Orifice meter is part of										
a)	Flow of fluid	b)	Size reduction	c)	Size separation	d)	Venturimeter				
55.	According to Bernoulli's equation	vel	ocity head off	fluid	of pitot tube obtained by which of	the	following equation.				

a) $\Delta HP = V^2 / 2g$	b) $\Delta HP = 2g/V$	c) ∆HP=	$2g/V \times u$	d) $\Delta HP = V/2g$				
56. Pitot tube is used to measure ofa) Velocity	b) Speed	c) Flow		d) Density				
57. Pitot tube measure velocity	_ point only.	c) Two		d) End				
58 Which of the following is advanta	ge of nitot tube?	c) 1wo		u) Liiu				
a) It measures velocity at one point	b) They do not give average velocity results directly	c) Both		d) None of these				
59. Pitot tube also is known as	tube.							
a) Insertion tube	b) Venturi tube	c) Conne	ctive tube	d) None of these				
60. In pitot tube the direction of flow	tube is							
a) Perpendicular and parallel	b) Parallel	c) Oppos	ite	d) Same				
61. Rotameter measure the		\ TT ' 1						
a) Area of flow	b) Cross section of flow	c) Height	COT HOW	a) velocity of flow				
62. In Rotameter, plummet rises and	falls because of	in flow.						
a) Area	b) Velocity	c) Varia	tion	d) Height				
63. The upper edge of plummet is used to on tapered tube.								
a) Weight	b) Measure	c) Readi	ng	d) Flow				
64. Rotameter tube is made up of								
a) Glass	b) Wood	c) Fiber		d) Plastic				

65. Rotameter are available with e	lectric and electronic	for recording.	
a) Device	b) Database	c) System	d) Transmitter
66 Fold range of flow of	an be measured by Rotan	neter.	
1. One hundred	2. Two Hundred	3. Three hundred	4. Four hundred
67. Plummet may be made of lead	, aluminum, glass and		
a) Plastic	b) Sodium	c) Wood	d) Iron
1. In sieve shaker major disadvan	tage of size reduction take	es place due to	
a) Impact	b) Cutting	c) Attrition	d) Brushing
The working of Fluid energy mill i	s based on principle of		
a) Impact	b) Attrition	c) Cutting	d) Both a & b
Size reduction is also known as			
a) Comminution	b) Pulverization	c) Diminution	d) All of the above
2. Nominal size of aperture is	•••••		
a) Distance between two adjacent wires	b) no. of meshes	c) specified diameter of wire	d) None of above
3. The bell crank lever arrangeme	ent is major part of which	of the following	
a) Cyclone separator	b) Air separator	c) Edge runner mill	d) Bag filter
4. The method of separating power	ders on basis of their densi	ty is known as	
a) Sedimentation	b) Centrifugation	c) Elutriation	d) both a and b